Аппроксимация и экстраполяция многочленами 5-й степени на трехточечных сетках

© Н.Д. Дикусар

Лаборатория информационных технологий ОИЯИ, Дубна

Аннотация. В рамках метода базисных элементов (МБЭ) разработаны алгоритмы кусочно-полиномиальной аппроксимации (КПА) шестого порядка с автоматическим обнаружением узлов и среднеквадратичной кусочнополиномиальной аппроксимации (СКПА), а также получены новые формулы для кубической экстраполяции.

Кусочно-полиномиальная аппроксимация высоких порядков, как и сплайны [1], более выгодна по сравнению с кусочно-кубической. В задачах, где требуется гладкость не выше $C^{(1)}$, эффективность аппроксимации КПА 6-го порядка выше чем у кубических сплайнов [2].

В МБЭ конструкция многочлена *n*-й степени основана на одной кубической и трех квадратичных параболах (*базисных элементах*), заданных на трехточечной сетке [3]. МБЭ-многочлены обладают полезными свойствами, позволяющими повысить эффективность методов обработки данных [2], [3]. Сегментация и сглаживание кривых актуальны в различных областях современных технологий.

Кусочная МБЭ-аппроксимация

В [2] приведены формулы для коэффициентов многочлена $f(x) \approx \mathcal{D}_n(x-x_0) = \sum_{i=0}^n d_i(x-x_0)^i$, аппроксимирующего f(x) ее разложением по степеням $(x-x_0)$ на трехточечной сетке $\Delta_3(\alpha,\beta)$: $x_{\alpha} = x_0 + \alpha < x_0 < x_0 + \beta = x_{\beta}$, где $\alpha = x_{\alpha} - x_0$, $\beta = x_{\beta} - x_0, \ \alpha\beta < 0, \alpha < \beta$. Коэффициенты $d_i = \underline{d_i(\alpha,\beta; f_{\nu}^{(m)})}, \ f_{\nu}^{(m)} = f^{(m)}(x_{\nu}), \ \nu = \alpha, \beta, 0,$ $m = 0, \lfloor n/3 \rfloor$ получены в рамках метода базисных элементов (МБЭ).

В случае равномерной сетки $\Delta_3(h = const)$ для n = 5 получим: $\alpha = -h, \beta = h$ и

$$\mathcal{D}_5(x-x_0) = \sum_{i=0}^5 d_i (x-x_0)^i, x \in [x_0-h, x_0+h]$$
(1)

с коэффициентами

$$\begin{aligned} &d_0 = f_0, \quad d_1 = f'_0, \\ &d_2 = [\nabla^2 f(4, -8, 4) + h\nabla f'(1, -1)]/(4h^2), \\ &d_3 = [\nabla f(5, -5) - h\nabla^2 (f'(1, 8, 1)]/(4h^3), \\ &d_4 = [\nabla^2 f(-2, 4, -2) + h\nabla f'(-1, 1)]/(4h^4), \\ &d_5 = [\nabla f(3, -3))f + h\nabla^2 f'(1, 4, 1)]/(4h^5), \end{aligned}$$

где $\nabla \phi(I,J) = I\phi_{-h} + J\phi_h,$

 $\nabla^2 \phi(K, L, M) = K\phi_{-h} + L\phi_0 + M\phi_h,$

 $\phi_{\nu} = \phi(x_0 + \nu), \phi = f, f', \nu = -h, 0, h; I, J, K, L, M \in Z.$ В (1)-(2) d_i зависят от h, f, f' в узлах $\Delta_3(h)$ и отличаются от коэффициентов $f^{(m)}(x_0)/m!$,

 $m = \overline{0,5}$ в многочлене Тейлора $\mathcal{T}_5(x - x_0)$.

О погрешности МБЭ-аппроксимации

При аппроксимации $f(x) \in C$ на $\Delta_3(h)$ многочленом (1)-(2) оппибка $\varepsilon_{\mathcal{D}}(x) = |f(x)) - \mathcal{D}_5(x)|$ в узлах сетки Δ_3 обращается в нуль, то есть $\mathcal{D}(x_0 + \nu) = f(x_0 + \nu), \ \nu = -h, 0, h$ (рис. 1). Максимальная оппибка на отрезке $[x_0 - h, x_0 + h]$ существенно зависит от h, выбор которого определяется сложностью функции и ее производной на отрезке $[x_0 - h, x_0 + h]$.

Рис 1. Поведение опибок $\varepsilon_{\mathcal{D}}(x) = |f - \mathcal{D}_5|$ и $\varepsilon_{\mathcal{T}}(x) = |f - \mathcal{T}_5|$ (точки) для $x \in [x_0 - h, x_0 + h]$

Свойство $\varepsilon_{\mathcal{D}}(x) \to 0$, при $x \to x_0 + \nu$ играет ключевую роль при разработке алгоритмов с использованием многочленов в форме МБЭ. Ниже приведены краткое описание и результаты работы алгоритмов КПА и СКПА.

Алгоритм КПА шестого порядка

Методы и алгоритмы КПА (сегментации) широко применяются в научных и прикладных исследованиях, в промышленном дизайне и др. Алгоритм КПА шестого порядка использует многочлен (1) - (2) в качестве модели локального сегмента кривой $S_k(x) \approx f(x), x \in [x_{0k} - h_k, x_{0k} + h_k], k = 1, 2, ... и, в отличие от классической схемы КПА, использует дополнительный узел <math>x_0 \in [x_0 - h, x_0 + h]$. Коэффициенты d_{ik} определяются по $f_{-h_k}^{(m)}, f_{0_k}^{(m)}, m = 0, 1$ и h_k . При этом непрерывность и гладкость стыковки S_k и S_{k+1} обеспечивается условиями

$$f^{(m)}(x_{0_k} + h_k) \equiv f^{(m)}(x_{0_{k+1}} - h_{k+1}), m = 0, 1.$$
 (3)

На рис. 2 приведены результаты работы алгоритма КПА, в котором $\mathcal{D}_5(x-x_0)$ и многочлены Тейлора $\mathcal{T}_5(x-x_0)$ с коэффициентами $f^{(i)}(x_0^{(k)})/i!, i = \overline{0,5}$ использованы для сегментации кривой $f(x) = F(x, 0.2), x \in [-1.5, 1.5]$, взятой на поверхности Франке [4], в виде суммы четырех гауссовских экспонент:

$$F(x, y) = 0.75exp(-[(9x - 2)^{2} + (9y - 2)^{2}]/4) + 0.75exp[-(9x + 1)^{2}/49 - (9y + 1)^{2})/10] + 0.5exp[-(9x - 7)^{2} + (9y - 3)^{2}]/4 - 0.2exp[-(9x - 4)^{2} - (9y - 7)^{2}].$$
(4)

Качество аппроксимации существенно зависит от выбора шагов h_k , от сложности функции и ее первой производной.

На шести равномерных сетках $\Delta_3(h_k), k = \overline{1,6}$ $x_{0_k} - h_k < x_{0_k} < x_{0_k} + h_k$ по значениям $\{f_j\}$ и $\{f'_j\}, j = \overline{1,13}$, заданных в узлах каждой сетки с шагом h = 0.5 по формулам (1)-(2), с учетом (3), получены уравнения для 6-ти сегментов (рис. 2a). Приведены графики первых производных $\mathcal{D}'_{5k}(x - x_0)$ и $\mathcal{T}'_{5k}(x - x_0)$ (рис. 26) и сегментация с использованием $\mathcal{T}_5(x - x_0)$ (рис. 2b).

Рис 2. КПА шестого порядка: узлы, сегменты S_k , ошибка $\varepsilon_{\mathcal{D}}(\mathbf{a}); S'_k = \mathcal{D}'_{5k}$ и \mathcal{T}'_{5k} (точки) (б); \mathcal{T}_{5} - сегменты и $\varepsilon_{\mathcal{T}}$ - ошибки (в)

Автоматическое обнаружение узлов

Уравнение сегмента $S_j(x) = \mathcal{D}_5(x - x_{0j}; \mathbf{d}_j) \approx f(x), x \in [x_{0j} - h_j, x_{0j} + h_j], \mathbf{d}_j = [d_{0j}, d_{1j}, ..., d_{5j}]^T, j = 1, 2, ... использует локальную сетку <math>\Delta_3(h_j)$. Условие (3) обеспечивает непрерывность и гладкость первого порядка в узлах стыковки. Опибка $\varepsilon_{\mathcal{D}}(x_{0j} + h_j)$ на правой границе *j*-го сегмента $S_j(x)$ близка к нулю и вычисляется через h_j и $f^{(m)}(x_{0j} + h_j), m = 0, 1$. Алгоритм использует это свойство для обнаружения стыковочных узлов при "сканировании" f(x) с переменным $h_k = kh_0, k = 1, 2, ..., h_0 \ll h_j$ путем вычисления величины

$$\lambda_k = \frac{|\mathcal{D}_5(h_k, \mathbf{d}_k) - \mathcal{D}_5(h_{k-1}, \mathbf{d}_{k-1})|}{|\mathcal{D}_5(h_k, \mathbf{d}_k) - \mathcal{D}_5(h_{k-2}, \mathbf{d}_{k-2})|}, k > 2$$

В момент перехода через границу λ_k изменяется скачком. При $\lambda_k > T$ (Т - заданный порог) значение $x_h = x_{0_k} + h_k$ принимается за границу $S_j(x)$. Подробное описание алгоритма см. в [2].

На рис. 3-4 приведены результаты автоматического обнаружения узлов для кусочнополиномиальной аппроксимации функции

$$f(x) = \sqrt{\frac{\epsilon(2+\epsilon)}{2\pi(1+\epsilon-\cos x)}}, \ x \in [-3.14, 3.14],$$
(5)

предложенной в работе [1] в качестве теста для оценки ошибок приближения сложных функций В-сплайнами высоких степеней.

Рис 3. Обнаружение узлов для функции (5)(а). Узлы и сегменты $S_j(x), S'_j(x)$ (б) и $S''_j(x)$ (в).

На графиках (рис. 4) в логарифмическом масштабе показаны ошибки аппроксимации функции (5), ее первой и второй производных. Визуально наблюдается непрерывность и гладкость первой производной, почти гладкая вторая производная с разрывами в трех узлах.

Все расчеты велись с точностью до десятого знака, а производные находились численно $\hat{f}'_{\nu} = [f(x_{\nu} + \varrho) - f(x_{\nu})]/\varrho, \ \nu = -h, 0, h,$ где $\varrho = 10^{-5}$. Расчеты даны в табл. 1, где показаны h_n , узлы и коэффициенты $d_{3_n}, d_{4_n}, d_{5_n}$.

1	аблица]

n	<i>k</i> *	h_n	$\overline{x}_{0n} + h_n$	d_{3n}	d_{4n}	d_{5n}
1	160	0.6519	-2.488	0.002210078852	0.001955482703	0.000408956349
2	308	1.2587	-1.229	0.02017365274	0.01263787540	0.00556063124
3	294	1.2013	-0.028	-0.07798676832	-0.4541606788	-0.3238439375
4	204	0.8323	0.8042	0.8878975418	-0.6337884515	-0.4386260570
5	202	0.8241	1.6283	-0.08426001952	0.03909126085	-0.0047884727
6	186	0.7585	2.386	-0.01470730410	0.008266380715	-0.0037648384
7	138	0.5617	2.948	-0.00341839266	0.002303214895	-0.0006302299
8	58	0.2337	3.14	-0.00037764951	0.001756091848	-0.0037882789

При $\epsilon = 0.05$ функция (5) становится более трудной для аппроксимации. На рис. 5 приведены результаты сегментации $f(x; 0.05), x \in [-3.14, 3.14]$ на равномерной сетке с $h_n = 0.3$ (10 сегментов). Оценка среднеквадратичного отклонения (с.к.о.) на выборке из 300 точек (по 30 точек на сегмент) составила $\hat{\sigma}_{\varepsilon_{\mathcal{D}}} = 0.0013$.

Рис.5. КПА шестого порядка функции (5), $\epsilon = 0.05$, h=0.3 (a) и графики производных (б) и (в)

Использование МБЭ-многочленов для среднеквадратичной аппроксимации (сглаживания) повышает эффективность алгоритмов в плане устойчивости и понижения сложности вычислений. В случае сглаживания шестого порядка, модель локального сегмента представляется МБЭ-многочленом в виде

$$S(x) = \mathbf{w}^T \mathbf{f} + \mathbf{b}^T \mathbf{r},\tag{6}$$

где вектор $\mathbf{f} = [f_{\alpha}, f_{\beta}, f_0]^T$ фиксирован, а $\mathbf{r} = [r_{\alpha}, r_{\beta}, r_0]^T$ - свободен, $\mathbf{w} = [w_1, w_2, w_3]^T$, $\mathbf{b} = Q\mathbf{w}$, где $Q(x; \alpha, \beta)$ и $w_i(x; \alpha, \beta)$ – базисные элементы. При известной оценке \mathbf{f} , МНК-оценка $\hat{\mathbf{r}}$ определяется на основе устойчивой по отношению к входным оппибкам, трансформированной модели $u(x) = \mathbf{b}^T \mathbf{r}$, где $u(x) = f(x) - \mathbf{w}^T \mathbf{f}$, полученной модификацией входных данных. В результате размерность нормальной матрицы для модели сокращается на три, что повышает устойчивость расчетов и понижает вычислительную сложсность.

Алгоритм СКПА (среднеквадратичная кусочно-полиномиальная аппроксимация)

Подробно алгоритм СКПА изложен в [2]. Алгоритм среднеквадратичной сегментации выполняется в пять этапов: I)– исходная выборка $\{\tilde{f}_i\}_{i=1}^N$ разбивается на подвыборки $\{f_{jk}\}_{j=1}^{N_k}, k = 1, 2, ..., \sum_k N_k = N$, соответствующие k-му сегменту; II) – в каждой подвыборке вычисляются реперные точки $\overline{\mathbf{f}}_k$ путем усреднения нескольких соседних точек; III) – данные подвыборки k-го сегмента S_k преобразуются по формуле $\tilde{u}_{jk} = \tilde{f}_{jk} - \mathbf{w}^T \overline{\mathbf{f}}_k$; IV) – вычисляется МНК-оценка $\hat{\mathbf{r}}_k$; V) – подстановкой $\overline{\mathbf{f}}_k$ и $\hat{\mathbf{r}}_k$ в (6) получаем, сглаженный полиномом пятой степени, сегмент S_k .

Рис 6. Сглаживание шестого порядка: (этапы I - III)(а) и (этапы IV - V)(б)

Проверка алгоритма СКПА выполнялась на выборке точек, рассеянных вблизи кривой $f(x) = 25/(x^2 + 25) - 0.55sin(x + 2.01)/(x + 2.01), x \in$ [-10, 18], аддитивно искаженной случайными независимыми ошибками $e_i \sim N(0, \sigma)$, где $\sigma = 0.1$ (рис. 6а). Отрезок разбит на четыре локальных отрезка [-10, -3], [-3, 4], [4, 11] и [11, 18], внутри которых точки выбраны так, чтобы $\alpha = -2$ и $\beta = 5$. После "оцифровки"кривой с шагом h = 3/70, получены четыре локальных выборки $\bigcup_{k=1}^{4} \{f_{jk}\}_{j=1}^{175} = \{\tilde{f}_i\}_{i=1}^{700}$ (этап I). Результаты обработки этих данных приведены на рис. 6а, где показаны узлы, усредненные по 11 соседним точкам (этапы II-III), и гистограмма входных ошибок. Графики $\hat{S}_k(x)$, $\hat{S}'_k(x)$ и гистограмма остатков показаны на рис. 6б (этапы IV и V).

На рис. 7 и в табл. 2 приведены результаты работы алгоритма СКПА для данных $\{\tilde{f}_i = F(x_i; 0.2) + e_i\}_{i=1}^{450}$, рассеянных вдоль кривой на поверхности (4) (см. рис. 2), с небольшими ошибками ($\sigma = 0.03$).

Рис. 7. СКПА: этапы I-III (а) и IV-V (б)

Значения параметров для Δ_{3k} равны $\alpha = -0.2$ и $\beta = 0.455$ (неравномерная сетка). Численные значения коэффициентов $d_{ik}, i = \overline{0, 5}, k = \overline{1, 5}$ и узлов для \hat{S}_k , приведены в табл. 2.

таолица 2										
k	x < x _β	<i>x</i> ₀	d_0	d_1	<i>d</i> ₂	d ₃	d4	ds		
1	-0.745	-1.20	0.04476	0.20831	-0.19961	0.03591	11.14978	-20.8310		
2	-0.090	-0.545	0.24856	0.30163	0.29280	0.71040	-8.37142	14.93659		
3	0.565	0.110	0.86928	2.13414	-6.97506	-25.8076	50.12382	13.37426		
1	1.220	0.765	0.44233	-0.28562	-5.50774	0.02165	46.99131	-59.6395		
5	1.875	1.420	0.00738	0.06712	-0.17509	-2.50013	9.57174	-9.02011		

Кубическая МБЭ-экстраполяция

В задачах экстраполяции требуется найти значение \hat{y}_{N+1} в точке $x_{N+1} \ni [a, b]$ по N точкам некоторой функции y(x), заданным на отрезке [a, b] (причем само уравнение y(x) неизвестно, известны только точки).В случае МБЭэкстраполяции известны также точки y'_N .

Степень *п* многочлена (6) зависит от взаимного расположения точек r_{α} , r_{β} и r_0 на плоскости. Если r_{ν} , $\nu = \alpha, \beta, 0$ лежат на квадратичной параболе, то n = 5, если на наклонной прямой, то n = 4, а для кубического многочлена эти точки лежат на горизонтальной прямой. Коэффициенты **r** в модели (6) зависят от α , β и $f_{\nu}^{(m)} = f^{(m)}(x_{\nu}), m = 0, 1$. Компоненты вектора **r** вычисляются по следующим формулам [2]:

$$r_{\alpha} = -\frac{1}{\alpha\gamma}f_{\alpha}' + \frac{\gamma - \alpha}{\alpha^{2}\gamma^{2}}f_{\alpha} + \frac{1}{\gamma^{2}\beta}f_{\beta} - \frac{1}{\beta\alpha^{2}}f_{0},$$

$$r_{\beta} = \frac{1}{\beta\gamma}f_{\beta}' + \frac{1}{\alpha\gamma^{2}}f_{\alpha} - \frac{\beta + \gamma}{\gamma^{2}\beta^{2}}f_{\beta} - \frac{1}{\beta^{2}\alpha}f_{0},$$

$$r_{0} = \frac{1}{\alpha\beta}f_{\beta}' + -\frac{1}{\alpha^{2}\gamma}f_{\alpha} + \frac{1}{\gamma\beta^{2}}f_{\beta} + \frac{\alpha + \beta}{\beta^{2}\alpha^{2}}f_{0} \quad .$$
(7)

где $\gamma = \beta - \alpha$.

Для кубического МБЭ-многочлена значения r_{ν} равны между собой $r_{\alpha} = r_{\beta} = r_0 = \theta$, где $\theta = const \neq 0$, т.е. $\mathbf{r} = [\theta, \theta, \theta]^T$.

Используя кубическую МБЭ-аппроксимацию $f(x) \approx \mathbf{w}^T \mathbf{f} + \theta Q$ на сетке $x_{\alpha} < x_0 < x_{\beta}$ с учетом (7), получим оценки \hat{f}_{β} и \hat{f}'_{β} через α , β , $f^{(m)}_{\alpha}$

и
$$f_{\beta}^{(m)}$$
, $m = 0, 1$ из уравнений $r_{\alpha} = r_{\beta}$ и $r_{\alpha} = r_{0}$:
 $\hat{f}_{\beta} = \frac{\left[(\alpha + 2\beta)\gamma^{2}f_{0} + (\alpha - 2\gamma)\beta^{2}f_{\alpha} + \alpha\beta\gamma(\beta f_{\alpha}^{'} + \gamma f_{0}^{'})\right]}{\alpha^{3}},$
 $\hat{f}_{\beta}^{'} = \frac{(2\alpha + \beta)\gamma^{2}f_{0} - (\alpha + \gamma)\beta^{2}f_{\alpha} + (\beta + 2\gamma)\alpha^{2}\hat{f}_{\beta}}{\alpha^{2}\beta\gamma} + \frac{\gamma f_{0}^{'}}{\alpha}.$ (8)

Первая формула в (8) дает прогноз f_{β} в точке $x_{\beta} = x_0 + \beta$ при известных α , β , $f(x_0 + \alpha)$, $f(x_0)$, $f'(x_0 + \alpha)$ и $f'(x_0)$, а вторая дает оценку производной $\hat{f}'(x_0 + \beta)$. Таким образом, экстраполяция f(x) на отрезке $[x_0, x_0 + \beta]$ определяется четырьмя коэффициентами $f_{\alpha}, \hat{f}_{\beta}, f_0$ и $\hat{\theta} = \hat{r}_{\alpha}$ (или $\hat{\theta} = \hat{r}_{\beta}$ из (7)).

При $\alpha = -h$ и $\beta = kh, k = 1, 2, ...$ из (8) легко получить формулы прогноза в точке, лежащей на расстоянии k шагов справа от x_0 :

$$\begin{split} \hat{f}_{kh} &= [k(k+1)(kf_{-h}^{'} + (k+1)f_{0}^{'})]h \\ &-(k+1)^{2}(2k-1)f_{0} + k^{2}(2k+3)f_{-h}, \\ \hat{f}_{kh}^{'} &= \frac{[(3k+2)\hat{f}_{kh} + (k-2)(k+1)^{2}f_{0} - k^{3}f_{-h}]}{k(k+1)h} \\ &-(k+1)f_{0}^{'}. \end{split}$$

При k = 1 эти формулы упрощаются: $\hat{f}_h = 2h(f'_{-h} + 2f'_0) - 4f_0 + 5f_{-h},$ $\hat{f}'_h = (5\hat{f}_h - 4f_0 - f_{-h})/(2h) - 2f'_0.$ На рис. 8 показан график кубической экстра-

На рис. 8 показан график кубической экстраполяции для функции $f(x) = sinx + cos7x, x \in [0.85, 1.05]$. Значения $\hat{f}_{kh}(h)$ и $\hat{f}'_{kh}(h)$ получены при $h = kh_0, h_0 = 0.001, k = \overline{1, 200}$.

Рис. 8. Кубическая МБЭ-экстраполяция (а). Графики ошибок ε_{kh} (б) и ε'_{kh} (в)

Графики $\varepsilon_{kh}(x) = |f_{kh} - \hat{f}_{kh}|$ и $\varepsilon'_{kh}(x) = |f'_{kh} - \hat{f}'_{kh}|$ показаны в двойном логарифмическом масштабе на рис. 8(б,в), где точками также показаны графики $h^i, i = 1, 2, 3$ (для сравнения). Легко видеть, что $\varepsilon_{kh} \sim O(h^3), x \in [x_0, x_0 + 10h_0]$ и $\varepsilon_{kh} \sim O(h^2), x \in [x_0 + 10h, x_0 + 100h_0]$, т.е. точность экстраполяции ухудшается с ростом расстояния до точки прогноза и, наоборот, повышется с его уменьшением.

Заключение. В рамках метода базисных элементов предложена методика и алгоритмы сегментации и сглаживания кривых МБЭмногочленами пятой степени. Модель локального сегмента использует значения f и f' в трех узлах локальной сетки. Получены формулы для коэффициентов в разложении функции по степеням $x - x_0$ на отрезке $[x_0 + \alpha, x_0 + \beta], \alpha < \beta, \alpha\beta < 0,$ зависящие от параметров α , β и значений функции и ее первой производной в узлах локальной сетки и обеспечивающих нулевую погрешность на границах интервала. Полученные формулы представляют самостоятельный интерес. Их можно использовать как для решения практических задач, так и в теоретических исследованиях.

Алгоритм автоматического обнаружения узлов локальных сеток обеспечивает непрерывность стыковки сегментов и гладкость производных вплоть до третьего порядка (в зависимости от шага сетки). Численные расчеты на достаточно трудных тестах показали высокую эффективность МБЭ-модели в плане устойчивости вычислений, точности и гладкости аппроксимации.

Все формулы для расчетов просты. Число арифметических операций в них можно сократить табулированием выражений, зависящих от параметров сетки. Устойчивость к опшобкам преобразования входных данных уменьшает размерность нормальной матрицы на *mpu*, что позволяет в несколько раз *сократить вычислительную сложсность* только на операциях с нормальной матрицей. Большое число арифметических операций экономится за счет понижения максимального порядка производных аппроксимируемой функции, используемых при вычислении коэффициентов.

Предложенные алгоритмы актуальны при практическом решеним задач в области обработки экспериментальных данных, цифровой обработки сигналов, в промышленном дизайне, в алгоритмах оптимизации, при решении задач методами граничных элементов и т.п.

В плане дальнейших исследований предполагается в рамках МБЭ получить формулы для $d_i(h; \nabla \phi(I, J), \nabla^2 \phi(K, L, M)), i = \overline{0, n}, n > 5$ с целью повышения эффективности алгоритмов и методов экстраполяции, аппроксимации и сглаживания высоких порядков.

Список литературы

- H.H. Калиткин, И.М. Шляхов. В-сплайны высоких степеней // Математическое моделирование, 1999, т.11, н.11, с. 64-74.
- [2] Н.Д. Дикусар. Кусочно-полиномиальная аппроксимация шестого порядка с автоматическим обнаружением узлов. P11-2012-86.(принято к печати в журнале Математическое моделирование).
- [3] Н.Д. Дикусар. Метод базисных элементов// Математическое моделирование, 2010, т.22, н.12, с. 115-136. (N.D. Dikusar. *The Basic Element Method.* MMCS, 2011, Vol. 3, No. 4, pp.492-507).
- [4] R. Franke. Scattered data Interpolation: Tests of some Methods// Mathematics of Computation, 1982, 38, p.181.